Debugger.Object¶
A Debugger.Object
instance represents an object in the debuggee,
providing reflection-oriented methods to inspect and modify its referent.
The referent’s properties do not appear directly as properties of the
Debugger.Object
instance; the debugger can access them only through
methods like Debugger.Object.prototype.getOwnPropertyDescriptor
and
Debugger.Object.prototype.defineProperty
, ensuring that the debugger will
not inadvertently invoke the referent’s getters and setters.
SpiderMonkey creates exactly one Debugger.Object
instance for each
debuggee object it presents to a given Debugger
instance: if the debugger encounters the same object through two different
routes (perhaps two functions are called on the same object), SpiderMonkey
presents the same Debugger.Object
instance to the debugger each time.
This means that the debugger can use the ==
operator to recognize when
two Debugger.Object
instances refer to the same debuggee object, and
place its own properties on a Debugger.Object
instance to store metadata
about particular debuggee objects.
JavaScript code in different compartments can have different views of the
same object. For example, in Firefox, code in privileged compartments sees
content DOM element objects without redefinitions or extensions made to
that object’s properties by content code. (In Firefox terminology,
privileged code sees the element through an “xray wrapper”.) To ensure that
debugger code sees each object just as the debuggee would, each
Debugger.Object
instance presents its referent as it would be seen from a
particular compartment. This “viewing compartment” is chosen to match the
way the debugger came across the referent. As a consequence, a single
Debugger
instance may actually have several
Debugger.Object
instances: one for each compartment from which the
referent is viewed.
If more than one Debugger
instance is debugging the
same code, each Debugger
gets a separate
Debugger.Object
instance for a given object. This allows the code using
each Debugger
instance to place whatever properties it
likes on its own Debugger.Object
instances, without worrying about
interfering with other debuggers.
While most Debugger.Object
instances are created by SpiderMonkey in the
process of exposing debuggee’s behavior and state to the debugger, the
debugger can use Debugger.Object.prototype.makeDebuggeeValue
to create
Debugger.Object
instances for given debuggee objects, or use
Debugger.Object.prototype.copy
and Debugger.Object.prototype.create
to
create new objects in debuggee compartments, allocated as if by particular
debuggee globals.
Debugger.Object
instances protect their referents from the garbage
collector; as long as the Debugger.Object
instance is live, the referent
remains live. This means that garbage collection has no visible effect on
Debugger.Object
instances.
Accessor Properties of the Debugger.Object prototype¶
A Debugger.Object
instance inherits the following accessor properties
from its prototype:
proto
¶
The referent’s prototype (as a new Debugger.Object
instance), or null
if
it has no prototype. This accessor may throw if the referent is a scripted
proxy or some other sort of exotic object (an opaque wrapper, for example).
class
¶
A string naming the ECMAScript [[Class]]
of the referent.
callable
¶
true
if the referent is a callable object (such as a function or a
function proxy); false otherwise.
name
¶
The name of the referent, if it is a named function. If the referent is
an anonymous function, or not a function at all, this is undefined
.
This accessor returns whatever name appeared after the function
keyword in the source code, regardless of whether the function is the
result of instantiating a function declaration (which binds the
function to its name in the enclosing scope) or evaluating a function
expression (which binds the function to its name only within the
function’s body).
displayName
¶
The referent’s display name, if the referent is a function with a
display name. If the referent is not a function, or if it has no display
name, this is undefined
.
If a function has a given name, its display name is the same as its
given name. In this case, the displayName
and name
properties are
equal.
If a function has no name, SpiderMonkey attempts to infer an appropriate name for it given its context. For example:
function f() {} // display name: f (the given name)
var g = function () {}; // display name: g
o.p = function () {}; // display name: o.p
var q = {
r: function () {} // display name: q.r
};
Note that the display name may not be a proper JavaScript identifier,
or even a proper expression: we attempt to find helpful names even when
the function is not immediately assigned as the value of some variable
or property. Thus, we use a/b
to refer to
the b defined within a, and a<
to
refer to a function that occurs somewhere within an expression that is
assigned to a. For example:
function h() {
var i = function() {}; // display name: h/i
f(function () {}); // display name: h/<
}
var s = f(function () {}); // display name: s<
parameterNames
¶
If the referent is a debuggee function, the names of its parameters,
as an array of strings. If the referent is not a debuggee function, or
not a function at all, this is undefined
.
If the referent is a host function for which parameter names are not
available, return an array with one element per parameter, each of which
is undefined
.
If the referent is a function proxy, return an empty array.
If the function uses destructuring parameters, the corresponding array elements
are undefined
. For example, if the referent is a function declared in this
way:
function f(a, [b, c], {d, e:f}) { ... }
then this Debugger.Object
instance’s parameterNames
property would
have the value:
["a", undefined, undefined]
script
¶
If the referent is a function that is debuggee code, this is that
function’s script, as a Debugger.Script
instance. If the
referent is a function proxy or not debuggee code, this is undefined
.
environment
¶
If the referent is a function that is debuggee code, a
Debugger.Environment
instance representing the lexical
environment enclosing the function when it was created. If the referent
is a function proxy or not debuggee code, this is undefined
.
isError
¶
true
if the referent is any potentially wrapped Error; false
otherwise.
errorMessageName
¶
If the referent is an error created with an engine internal message template
this is a string which is the name of the template; undefined
otherwise.
errorLineNumber
¶
If the referent is an Error object, this is the 1-origin line number at which
the referent was created; undefined
otherwise.
errorColumnNumber
¶
If the referent is an Error object, this is the 1-origin column number in
UTF-16 code units at which the referent was created; undefined
otherwise.
isBoundFunction
¶
If the referent is a debuggee function, returns true
if the referent is a
bound function; false
otherwise. If the referent is not a debuggee
function, or not a function at all, returns undefined
instead.
isArrowFunction
¶
If the referent is a debuggee function, returns true
if the referent is an
arrow function; false
otherwise. If the referent is not a debuggee
function, or not a function at all, returns undefined
instead.
isGeneratorFunction
¶
If the referent is a debuggee function, returns true
if the referent was
created with a function*
expression or statement, or false if it is some
other sort of function. If the referent is not a debuggee function, or not a
function at all, this is undefined
. (This is always equal to
obj.script.isGeneratorFunction
, assuming obj.script
is a
Debugger.Script
.)
isAsyncFunction
¶
If the referent is a debuggee function, returns true
if the referent is an
async function, defined with an async function
expression or statement, or
false if it is some other sort of function. If the referent is not a
debuggee function, or not a function at all, this is undefined
. (This is
always equal to obj.script.isAsyncFunction
, assuming obj.script
is a
Debugger.Script
.)
isClassConstructor
¶
If the referent is a debuggee function, returns true
if the referent is a class,
or false if it is some other sort of function. If the referent is not a debuggee
function, or not a function at all, this is undefined
. (This is always equal to
obj.script.isClassConstructor
, assuming obj.script
is a Debugger.Script
.)
isPromise
¶
true
if the referent is a Promise; false
otherwise.
boundTargetFunction
¶
If the referent is a bound debuggee function, this is its target function—
the function that was bound to a particular this
object. If the referent
is either not a bound function, not a debuggee function, or not a function
at all, this is undefined
.
boundThis
¶
If the referent is a bound debuggee function, this is the this
value it
was bound to. If the referent is either not a bound function, not a debuggee
function, or not a function at all, this is undefined
.
boundArguments
¶
If the referent is a bound debuggee function, this is an array (in the
Debugger object’s compartment) that contains the debuggee values of the
arguments
object it was bound to. If the referent is either not a bound
function, not a debuggee function, or not a function at all, this is
undefined
.
isProxy
¶
If the referent is a (scripted) proxy, either revoked or not, return true
.
If the referent is not a (scripted) proxy, return false
.
proxyTarget
¶
If the referent is a non-revoked (scripted) proxy, return a Debugger.Object
instance referring to the ECMAScript [[ProxyTarget]]
of the referent.
If the referent is a revoked (scripted) proxy, return null
.
If the referent is not a (scripted) proxy, return undefined
.
proxyHandler
¶
If the referent is a non-revoked (scripted) proxy, return a Debugger.Object
instance referring to the ECMAScript [[ProxyHandler]]
of the referent.
If the referent is a revoked (scripted) proxy, return null
.
If the referent is not a (scripted) proxy, return undefined
.
promiseState
¶
If the referent is a Promise
, return a string indicating
whether the Promise
is pending, or has been fulfilled or
rejected. This string takes one of the following values:
"pending"
, if thePromise
is pending."fulfilled"
, if thePromise
has been fulfilled."rejected"
, if thePromise
has been rejected.
If the referent is not a Promise
, throw a TypeError
.
promiseValue
¶
Return a debuggee value representing the value the Promise
has
been fulfilled with.
If the referent is not a Promise
, or the Promise
has not been fulfilled, throw a TypeError
.
promiseReason
¶
Return a debuggee value representing the value the Promise
has
been rejected with.
If the referent is not a Promise
, or the Promise
has not been rejected, throw a TypeError
.
promiseAllocationSite
¶
If the referent is a Promise
, this is the
JavaScript execution stack captured at the time of the
promise’s allocation. This can return null if the promise was not
created from script. If the referent is not a Promise
, throw
a TypeError
exception.
promiseResolutionSite
¶
If the referent is a Promise
, this is the
JavaScript execution stack captured at the time of the
promise’s resolution. This can return null if the promise was not
resolved by calling its resolve
or reject
resolving functions from
script. If the referent is not a Promise
, throw a TypeError
exception.
promiseID
¶
If the referent is a Promise
, this is a process-unique
identifier for the Promise
. With e10s, the same id can
potentially be assigned to multiple Promise
instances, if
those instances were created in different processes. If the referent is
not a Promise
, throw a TypeError
exception.
promiseDependentPromises
¶
If the referent is a Promise
, this is an Array
of
Debugger.Objects
referring to the promises directly depending on the
referent Promise
. These are:
Return values of
then()
calls on the promise.Return values of
Promise.all()
if the referentPromise
was passed in as one of the arguments.Return values of
Promise.race()
if the referentPromise
was passed in as one of the arguments.
Once a Promise
is settled, it will generally notify its
dependent promises and forget about them, so this is most useful on
pending promises.
Note that the Array
only contains the promises that directly depend on
the referent Promise
. It does not contain promises that depend
on promises that depend on the referent Promise
.
If the referent is not a Promise
, throw a TypeError
exception.
promiseLifetime
¶
If the referent is a Promise
, this is the number of
milliseconds elapsed since the Promise
was created. If the
referent is not a Promise
, throw a TypeError
exception.
promiseTimeToResolution
¶
If the referent is a Promise
, this is the number of
milliseconds elapsed between when the Promise
was created and
when it was resolved. If the referent hasn’t been resolved or is not a
Promise
, throw a TypeError
exception.
allocationSite
¶
If object allocation site tracking was enabled when this
Debugger.Object
’s referent was allocated, return the
JavaScript execution stack captured at the time of the
allocation. Otherwise, return null
.
Function Properties of the Debugger.Object prototype¶
The functions described below may only be called with a this
value
referring to a Debugger.Object
instance; they may not be used as methods
of other kinds of objects. The descriptions use “referent” to mean “the
referent of this Debugger.Object
instance”.
Unless otherwise specified, these methods are not
invocation functions; if a call would cause debuggee code to run
(say, because it gets or sets an accessor property whose handler is
debuggee code, or because the referent is a proxy whose traps are debuggee
code), the call throws a Debugger.DebuggeeWouldRun
exception.
These methods may throw if the referent is not a native object. Even simple
accessors like isExtensible
may throw if the referent is a proxy or some sort
of exotic object like an opaque wrapper.
getProperty(key, [receiver])
¶
Return a completion value with “return” being the value of the
referent’s property named key, or undefined
if it has no such
property. key must be a string or symbol; receiver must be
a debuggee value. If the property is a getter, it will be evaluated with
receiver as the receiver, defaulting to the Debugger.Object
if omitted. All extant handler methods, breakpoints, and so on remain
active during the call.
setProperty(key, value<, [receiver])
¶
Store value as the value of the referent’s property named
key, creating the property if it does not exist. key
must be a string or symbol; value and receiver must be
debuggee values. If the property is a setter, it will be evaluated with
receiver as the receiver, defaulting to the Debugger.Object
if omitted. Return a completion value with “return” being a
success/failure boolean, or else “throw” being the exception thrown
during property assignment. All extant handler methods, breakpoints,
and so on remain active during the call.
getOwnPropertyDescriptor(key)
¶
Return a property descriptor for the property named key of the
referent. If the referent has no such property, return undefined
.
(This function behaves like the standard
Object.getOwnPropertyDescriptor
function, except that the object being
inspected is implicit; the property descriptor returned is allocated as
if by code scoped to the debugger’s global object (and is thus in the
debugger’s compartment); and its value
, get
, and set
properties,
if present, are debuggee values.)
getOwnPropertyNames()
¶
Return an array of strings naming all the referent’s own properties, as
if Object.getOwnPropertyNames(referent)
had been
called in the debuggee, and the result copied in the scope of the
debugger’s global object.
getOwnPropertyNamesLength()
¶
Return the number of the referent’s own properties.
getOwnPropertySymbols()
¶
Return an array of strings naming all the referent’s own symbols, as
if Object.getOwnPropertySymbols(referent)
had been
called in the debuggee, and the result copied in the scope of the
debugger’s global object.
defineProperty(key, attributes)
¶
Define a property on the referent named key, as described by
the property descriptor descriptor. Any value
, get
, and
set
properties of attributes must be debuggee values. (This
function behaves like Object.defineProperty
, except that the target
object is implicit, and in a different compartment from the function
and descriptor.)
defineProperties(properties)
¶
Add the properties given by properties to the referent. (This
function behaves like Object.defineProperties
, except that the target
object is implicit, and in a different compartment from the
properties argument.)
deleteProperty(key)
¶
Remove the referent’s property named key. Return true if the property was successfully removed, or if the referent has no such property. Return false if the property is non-configurable.
seal()
¶
Prevent properties from being added to or deleted from the referent.
Return this Debugger.Object
instance. (This function behaves like the
standard Object.seal
function, except that the object to be sealed is
implicit and in a different compartment from the caller.)
freeze()
¶
Prevent properties from being added to or deleted from the referent, and
mark each property as non-writable. Return this Debugger.Object
instance. (This function behaves like the standard Object.freeze
function, except that the object to be sealed is implicit and in a
different compartment from the caller.)
preventExtensions()
¶
Prevent properties from being added to the referent. (This function
behaves like the standard Object.preventExtensions
function, except
that the object to operate on is implicit and in a different compartment
from the caller.)
isSealed()
¶
Return true if the referent is sealed—that is, if it is not extensible,
and all its properties have been marked as non-configurable. (This
function behaves like the standard Object.isSealed
function, except
that the object inspected is implicit and in a different compartment
from the caller.)
isFrozen()
¶
Return true if the referent is frozen—that is, if it is not extensible,
and all its properties have been marked as non-configurable and
read-only. (This function behaves like the standard Object.isFrozen
function, except that the object inspected is implicit and in a
different compartment from the caller.)
isExtensible()
¶
Return true if the referent is extensible—that is, if it can have new
properties defined on it. (This function behaves like the standard
Object.isExtensible
function, except that the object inspected is
implicit and in a different compartment from the caller.)
makeDebuggeeValue(value)
¶
Return the debuggee value that represents value in the debuggee.
If value is a primitive, we return it unchanged; if value
is an object, we return the Debugger.Object
instance representing
that object, wrapped appropriately for use in this Debugger.Object
’s
referent’s compartment.
Note that, if value is an object, it need not be one allocated in a debuggee global, nor even a debuggee compartment; it can be any object the debugger wishes to use as a debuggee value.
As described above, each Debugger.Object
instance presents its
referent as viewed from a particular compartment. Given a
Debugger.Object
instance d and an object o, the call
d.makeDebuggeeValue(o)
returns a
Debugger.Object
instance that presents o as it would be seen
by code in d’s compartment.
isSameNative(value)
¶
If value is a native function in the debugger’s compartment, return whether the referent is a native function for the same C++ native.
isSameNativeWithJitInfo(value)
¶
If value is a native function in the debugger’s compartment, return whether the referent is a native function for the same C++ native with the same JSJitInfo pointer value.
This can be used to distinguish functions with shared native function implementation with different JSJitInfo pointer to define the underlying functionality.
isNativeGetterWithJitInfo()
¶
Return whether the referent is a native getter function with JSJitInfo.
decompile([pretty])
¶
If the referent is a function that is debuggee code, return the
JavaScript source code for a function definition equivalent to the
referent function in its effect and result, as a string. If
pretty is present and true
, produce indented code with line
breaks. If the referent is not a function that is debuggee code, return
undefined
.
call(this, argument, ...)
¶
If the referent is callable, call it with the given this value
and argument values, and return a completion value
describing how the call completed. This should be a debuggee
value, or { asConstructor: true }
to invoke the referent as a
constructor, in which case SpiderMonkey provides an appropriate this
value itself. Each argument must be a debuggee value. All extant
handler methods, breakpoints, and so on remain active
during the call. If the referent is not callable, throw a TypeError
.
This function follows the invocation function conventions.
Note: If this method is called on an object whose owner Debugger object has an onNativeCall handler, only hooks on objects associated with that debugger will be called during the evaluation.
apply(this, arguments)
¶
If the referent is callable, call it with the given this value
and the argument values in arguments, and return a
completion value describing how the call completed. This
should be a debuggee value, or { asConstructor: true }
to invoke
function as a constructor, in which case SpiderMonkey provides
an appropriate this
value itself. Arguments must either be an
array (in the debugger) of debuggee values, or null
or undefined
,
which are treated as an empty array. All extant handler methods,
breakpoints, and so on remain active during the call. If
the referent is not callable, throw a TypeError
. This function
follows the invocation function conventions.
Note: If this method is called on an object whose owner Debugger object has an onNativeCall handler, only hooks on objects associated with that debugger will be called during the evaluation.
executeInGlobal(code, [options])
¶
If the referent is a global object, evaluate code in that global
environment, and return a completion value describing how it completed.
Code is a string. All extant handler methods, breakpoints,
and so on remain active during the call (pending note below). This function
follows the invocation function conventions.
If the referent is not a global object, throw a TypeError
exception.
Code is interpreted as strict mode code when it contains a Use Strict Directive.
This evaluation is semantically equivalent to executing statements at the global level, not an indirect eval. Regardless of code being strict mode code, variable declarations in code affect the referent global object.
The options argument is as for Debugger.Frame.prototype.eval
.
Note: If this method is called on an object whose owner Debugger object has an onNativeCall handler, only hooks on objects associated with that debugger will be called during the evaluation.
executeInGlobalWithBindings(code, bindings, [options])
¶
Like executeInGlobal
, but evaluate code using the referent as the
variable object, but with a lexical environment extended with bindings
from the object bindings.
An extra environment is created with bindings specified by bindings. The environment contains bindings corresponding to each own enumerable property of bindings, where the property name name as binding name, and the property value value as binding’s initial value.
If options.useInnerBindings
is not specified or is specified as false
,
it emulates where the bindings environment is placed outside of global,
which means, if the binding conflicts with any global variable declared in
the code, or any existing global variable, the binding is ignored.
If options.useInnerBindings
is speified as true
, it directly performs as
the bindings environment is placed inside the global, and the provided bindings
shadow the global variables.
Each value must be a debuggee value.
This is not like a with
statement: code may access, assign to, and
delete the introduced bindings without having any effect on the passed
bindings object, because the properties are copied to a new object for
each invocation.
This method allows debugger code to introduce temporary bindings that are visible to the given debuggee code and which refer to debugger-held debuggee values, and do so without mutating any existing debuggee environment.
Note that, like executeInGlobal
, any declarations it contains affect the
referent global object, even as code is evaluated in an environment
extended according to bindings. (In the terms used by the ECMAScript
specification, the VariableEnvironment
of the execution context for
code is the referent, and the bindings appear in a new
declarative environment, which is the eval code’s LexicalEnvironment
.)
The options argument is as for Debugger.Frame.prototype.eval
.
Note: If this method is called on an object whose owner Debugger object has an onNativeCall handler, only hooks on objects associated with that debugger will be called during the evaluation.
createSource(options)
¶
If the referent is a global object, return a new JavaScript source in the
global’s realm which has its properties filled in according to the options
object. If the referent is not a global object, throw a TypeError
exception. The options
object can have the following properties:
text
: String contents of the JavaScript in the source.url
: URL the resulting source should be associated with.startLine
: Starting line of the source.startColumn
: Starting column of the source.sourceMapURL
: Optional URL specifying the source’s source map URL. If not specified, the source map URL can be filled in if specified by the source’s text.isScriptElement
: Optional boolean which will set the source’sintroductionType
to"inlineScript"
if specified. Otherwise, the source’sintroductionType
will beundefined
.
asEnvironment()
¶
If the referent is a global object, return the Debugger.Environment
instance representing the referent’s global lexical scope. The global
lexical scope’s enclosing scope is the global object. If the referent is
not a global object, throw a TypeError
.
unwrap()
¶
If the referent is a wrapper that this Debugger.Object
’s compartment
is permitted to unwrap, return a Debugger.Object
instance referring to
the wrapped object. If we are not permitted to unwrap the referent,
return null
. If the referent is not a wrapper, return this
Debugger.Object
instance unchanged.
unsafeDereference()
¶
Return the referent of this Debugger.Object
instance.
If the referent is an inner object (say, an HTML5 Window
object),
return the corresponding outer object (say, the HTML5 WindowProxy
object). This makes unsafeDereference
more useful in producing values
appropriate for direct use by debuggee code, without using invocation functions.
This method pierces the membrane of Debugger.Object
instances meant to
protect debugger code from debuggee code, and allows debugger code to
access debuggee objects through the standard cross-compartment wrappers,
rather than via Debugger.Object
’s reflection-oriented interfaces. This
method makes it easier to gradually adapt large code bases to this
Debugger API: adapted portions of the code can use Debugger.Object
instances, but use this method to pass direct object references to code
that has not yet been updated.
forceLexicalInitializationByName(binding)
¶
If binding is in an uninitialized state initialize it to undefined and return true, otherwise do nothing and return false.
getPromiseReactions
¶
If the referent is a Promise
or a cross-compartment wrapper of one,
this returns an array of objects describing the reaction records added to the
promise. There are several different sorts of reaction records:
The array entry for a reaction record added with
then
orcatch
has the form{ resolve: F, reject: F, result: P }
, where eachF
is aDebugger.Object
referring to a function object, andP
is the promise that will be resolved with the result of calling them.The
resolve
andreject
properties may be absent in some cases. A call tothen
can omit the rejection handler, and a call tocatch
omits the resolution handler. Furthermore, various promise facilities create records like this as internal implementation details, creating handlers that are not representable as JavaScript functions.When a promise
P1
is resolved to another promiseP2
(such that resolvingP2
resolvesP1
in the same way) that adds a reaction record toP2
. The array entry for that reaction record is simply theDebugger.Object
representingP1
.Note that, if
P1
andP2
are in different compartments, resolvingP1
toP2
creates the same sort of reaction record as a call tothen
orcatch
, withP1
stored only in a private slot of theresolve
andreject
functions, and not directly available from the reaction record.An
await
expression callsPromiseResolve
on its operand to obtain a promiseP
, and then adds a reaction record toP
that resumes the suspended call appropriately. The array entry for that reaction record is aDebugger.Frame
representing the suspended call.If the
await
’s operandA
is a native promise with the standard constructor, thenPromiseResolve
simply returnsA
unchanged, and the reaction record for resuming the suspended call is added toA
’s list. But ifA
is some other sort of ‘thenable’, thenPromiseResolve
creates a new promise and enqueues a job to callA
’sthen
method; this may produce more indirect chains from awaitees to awaiters.JS::AddPromiseReactions
andJS::AddPromiseReactionsIgnoringUnhandledRejection
create a reaction record whose promise field isnull
.